Phosphorylation of histone H2B serine 32 is linked to cell transformation.

نویسندگان

  • Andy T Y Lau
  • Sung-Young Lee
  • Yan-Ming Xu
  • Duo Zheng
  • Yong-Yeon Cho
  • Feng Zhu
  • Hong-Gyum Kim
  • Sheng-Qing Li
  • Zhiguo Zhang
  • Ann M Bode
  • Zigang Dong
چکیده

Various types of post-translational modifications of the histone tails have been revealed, but a few modifications have been found within the histone core sequences. Histone core post-translational modifications have the potential to modulate nucleosome structure and DNA accessibility. Here, we studied the histone H2B core domain and found that phosphorylation of H2B serine 32 occurs in normal cycling and mitogen-stimulated cells. Notably, this phosphorylation is elevated in skin cancer cell lines and tissues compared with normal counterparts. The JB6 Cl41 mouse skin epidermal cell line is a well established model for tumor promoter-induced cell transformation and was used to study the function of H2B during EGF-induced carcinogenesis. Remarkably, cells overexpressing a nonphosphorylatable H2BS32A mutant exhibited suppressed growth and EGF-induced cell transformation, possibly because of decreased activation of activator protein-1, compared with control cells overexpressing wild type H2B. We identified ribosomal S6 kinase 2 (RSK2) as the kinase responsible for H2BS32 phosphorylation. Serum-starved JB6 cells contain very little endogenous H2BS32 phosphorylation, and EGF treatment induced this phosphorylation. The phosphorylation was attenuated in RSK2 knock-out MEFs and RSK2 knockdown JB6 cells. Taken together, our results demonstrate a novel role for H2B phosphorylation in cell transformation and show that H2BS32 phosphorylation is critical for controlling activator protein-1 activity, which is a major driver in cell transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sterile 20 Kinase Phosphorylates Histone H2B at Serine 10 during Hydrogen Peroxide-Induced Apoptosis in S. cerevisiae

Apoptosis is a highly coordinated cell suicide mechanism in vertebrates. Phosphorylation of serine 14 of histone H2B, catalyzed by Mst1 kinase, has been linked to chromatin compaction during apoptosis. We extend these results to unicellular eukaryotes by demonstrating that H2B is specifically phosphorylated at serine 10 (S10) in a hydrogen peroxide-induced cell death pathway in S. cerevisiae. H...

متن کامل

Apoptotic Phosphorylation of Histone H2B Is Mediated by Mammalian Sterile Twenty Kinase

DNA in eukaryotic cells is associated with histone proteins; hence, hallmark properties of apoptosis, such as chromatin condensation, may be regulated by posttranslational histone modifications. Here we report that phosphorylation of histone H2B at serine 14 (S14) correlates with cells undergoing programmed cell death in vertebrates. We identify a 34 kDa apoptosis-induced H2B kinase as caspase-...

متن کامل

Phosphorylation of Histone H2B at DNA Double-Strand Breaks

Posttranslational modifications of histone tails regulate numerous biological processes including transcription, DNA repair, and apoptosis. Although recent studies suggest that structural alterations in chromatin are critical for triggering the DNA damage response, very little is known about the nature of DNA damage-induced chromatin perturbations. Here we show that the serine 14 residue in the...

متن کامل

Thermodynamic Studies on the Interaction of Histone H2B with Dodecyl Trimethyl Ammonium Bromide

The interaction of histone H2B and dodecyl trimethyl ammonium bromide (DTAB) was studies via equilibrium dialysis method at two different temperatures, at pH 6.4 in phosphate buffer. The binding data were used to obtain the Gibbs free energy of interaction, which is interpreted in terms of a theoretical model based on the Wyman binding potential. The data were then used to obtain...

متن کامل

Phosphorylation of histones by tissue transglutaminase.

Tissue transglutaminase 2 (TG2) has recently been shown to have intrinsic serine/threonine kinase activity. Since histones are known to be cross-linked by TG2, we investigated whether histones are also substrates for TG2 kinase activity. TG2 was able to phosphorylate H1, H2A, H2B, H3, and H4 histones in vitro. Using peptide substrates and phosphospecific antibodies we demonstrated that TG2 phos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 30  شماره 

صفحات  -

تاریخ انتشار 2011